This paper considers the estimation and inference of the low-rank components in high-dimensional matrix-variate factor models, where each dimension of the matrix-variates ($p \times q$) is comparable to or greater than the number of observations ($T$). We propose an estimation method called $\alpha$-PCA that preserves the matrix structure and aggregates mean and contemporary covariance through a hyper-parameter $\alpha$. We develop an inferential theory, establishing consistency, the rate of convergence, and the limiting distributions, under general conditions that allow for correlations across time, rows, or columns of the noise. We show both theoretical and empirical methods of choosing the best $\alpha$, depending on the use-case criteria. Simulation results demonstrate the adequacy of the asymptotic results in approximating the finite sample properties. The $\alpha$-PCA compares favorably with the existing ones. Finally, we illustrate its applications with a real numeric data set and two real image data sets. In all applications, the proposed estimation procedure outperforms previous methods in the power of variance explanation using out-of-sample 10-fold cross-validation.
翻译:本文考虑了高维矩阵变异系数模型中低位成分的估计和推论,其中矩阵变量的每个维度(p \ times q$)可与观测量相近或大于(T$) 。我们建议了一个名为 $\ pha$-PCA 的估计方法,该方法通过超参数 $\ alpha$ 来保持矩阵结构和总和当代共差。我们开发了一个推论,在允许不同时间、行或噪音列之间相互关系的一般条件下,确定一致性、趋同率和限制分布。我们展示了选择最佳值($ alpha$ ) 的理论和经验方法,这取决于使用的情况标准。模拟结果表明在接近有限样本特性时,无位结果是否充分。美元-PCA 与现有参数相比是有利的。最后,我们用真实数字数据集和两个真实图像数据集来说明其应用情况。在所有应用中,拟议的估算程序都使用以往的电压差异解释方法。