Image recognition tasks typically use deep learning and require enormous processing power, thus relying on hardware accelerators like GPUs and FPGAs for fast, timely processing. Failure in real-time image recognition tasks can occur due to incorrect mapping on hardware accelerators, which may lead to timing uncertainty and incorrect behavior. Owing to the increased use of image recognition tasks in safety-critical applications like autonomous driving and medical imaging, it is imperative to assess their robustness to changes in the computational environment as parameters like deep learning frameworks, compiler optimizations for code generation, and hardware devices are not regulated with varying impact on model performance and correctness. In this paper we conduct robustness analysis of four popular image recognition models (MobileNetV2, ResNet101V2, DenseNet121 and InceptionV3) with the ImageNet dataset, assessing the impact of the following parameters in the model's computational environment: (1) deep learning frameworks; (2) compiler optimizations; and (3) hardware devices. We report sensitivity of model performance in terms of output label and inference time for changes in each of these environment parameters. We find that output label predictions for all four models are sensitive to choice of deep learning framework (by up to 57%) and insensitive to other parameters. On the other hand, model inference time was affected by all environment parameters with changes in hardware device having the most effect. The extent of effect was not uniform across models.


翻译:图像识别任务通常使用深层学习,需要巨大的处理能力,从而依靠GPUs和FPGAs等硬件加速器进行快速、及时处理。实时图像识别任务之所以失败,是因为硬件加速器的不正确测绘可能导致时间不确定性和不正确行为。由于在安全关键应用中更多地使用图像识别任务,例如自主驱动和医学成像,因此有必要评估这些任务对计算环境变化的稳健性,将其作为深层学习框架、代码生成的编译优化和硬件装置等参数,对模型性能和正确性的影响不同。在本文件中,我们对四种受欢迎的图像识别模型模型(MobileNetV2、ResNet101V2、DenseNet121和InceptionV3)进行稳健分析,这可能会导致时间的不确定性和不正确性。由于在图像网络数据集中更多地使用图像识别任务,评估模型计算环境中以下参数的影响:(1) 深层学习框架;(2) 编译优化;(3) 硬件装置。我们报告模型性表现的敏感性,对模型的性能产生不同程度的影响,每个环境参数的变化时间。我们发现,在五十七项结构中,最敏感的参数预测是最敏感的数值框架中,对五十七项的数值的影响。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
17+阅读 · 2021年1月21日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员