The intricacies inherent in contemporary real datasets demand more advanced statistical models to effectively address complex challenges. In this article we delve into problems related to identifying clusters across related groups, when additional covariate information is available. We formulate a novel Bayesian nonparametric approach based on mixture models, integrating ideas from the hierarchical Dirichlet process and "single-atoms" dependent Dirichlet process. The proposed method exhibits exceptional generality and flexibility, accommodating both continuous and discrete covariates through the utilization of appropriate kernel functions. We construct a robust and efficient Markov chain Monte Carlo (MCMC) algorithm involving data augmentation to tackle the intractable normalized weights. The versatility of the proposed model extends our capability to discern the relationship between covariates and clusters. Through testing on both simulated and real-world datasets, our model demonstrates its capacity to identify meaningful clusters across groups, providing valuable insights for a spectrum of applications.
翻译:暂无翻译