In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off-the-shelf detection methods. Our method, termed PolarMask, formulates the instance segmentation problem as instance center classification and dense distance regression in a polar coordinate. Moreover, we propose two effective approaches to deal with sampling high-quality center examples and optimization for dense distance regression, respectively, which can significantly improve the performance and simplify the training process. Without any bells and whistles, PolarMask achieves 32.9% in mask mAP with single-model and single-scale training/testing on challenging COCO dataset. For the first time, we demonstrate a much simpler and flexible instance segmentation framework achieving competitive accuracy. We hope that the proposed PolarMask framework can serve as a fundamental and strong baseline for single shot instance segmentation tasks. Code is available at: github.com/xieenze/PolarMask.
翻译:在本文中,我们引入了一种在概念上简单、完全进化且可以用作遮蔽预测模块(例如分解)的无锚框和单一镜头分解法,很容易将其嵌入大多数现成的检测方法中。我们的方法叫PollarMask(PollarMask)将例分解问题作为例中分解法和极地坐标的密集距离回归法。此外,我们提出两种有效的方法,分别处理高品质中心样本的取样和密集距离回归的优化,这可以大大改进工作绩效并简化培训过程。在没有任何钟声和哨声的情况下,极地Mask(PollarMask)在蒙面 mAP中实现了32.9%的成绩,就具有挑战性的CO数据集进行单一模型和单一规模的培训/测试。我们第一次展示了一个更简单、灵活的分解框架,以达到竞争性的准确性。我们希望拟议的极地Mask框架能够作为单发式分解任务的基本和有力的基准。代码可以查到: Github.com/xieenze/PolarMask(PolarMask) 。