We provide an efficient and private solution to the problem of encryption-aware data-driven control. We investigate a Control as a Service scenario, where a client employs a specialized outsourced control solution from a service provider. The privacy-sensitive model parameters of the client's system are either not available or variable. Hence, we require the service provider to perform data-driven control in a privacy-preserving manner on the input-output data samples from the client. To this end, we co-design the control scheme with respect to both control performance and privacy specifications. First, we formulate our control algorithm based on recent results from the behavioral framework, and we prove closeness between the classical formulation and our formulation that accounts for noise and precision errors arising from encryption. Second, we use a state-of-the-art leveled homomorphic encryption scheme to enable the service provider to perform high complexity computations on the client's encrypted data, ensuring privacy. Finally, we streamline our solution by exploiting the rich structure of data, and meticulously employing ciphertext batching and rearranging operations to enable parallelization. This solution achieves more than twofold runtime and memory improvements compared to our prior work.
翻译:我们为加密意识数据驱动控制问题提供了一个高效的私密解决方案。 我们将控制作为一种服务方案进行调查, 客户从服务供应商那里使用专门的外包控制解决方案。 客户系统的隐私敏感模型参数要么不存在,要么是变量。 因此, 我们要求服务供应商对客户的输入输出数据样本以保密方式进行数据驱动控制。 为此, 我们共同设计关于控制性能和隐私规格的控制方案。 首先, 我们根据行为框架的最新结果制定我们的控制算法, 我们证明古典配方与我们描述加密产生的噪音和精确错误的配方之间十分接近。 其次, 我们使用最先进的同质加密方案, 使服务供应商能够对客户的加密数据进行高精密的计算, 确保隐私。 最后, 我们通过利用丰富的数据结构来简化我们的解决方案, 并精密地使用加密组装和重新排列操作来实现平行化。 这一解决方案比我们之前的工作实现的双重运行时间和记忆改进。