The dominant way to control a robot manipulator uses hand-crafted differential equations leveraging some form of inverse kinematics / dynamics. We propose a simple, versatile joint-level controller that dispenses with differential equations entirely. A deep neural network, trained via model-free reinforcement learning, is used to map from task space to joint space. Experiments show the method capable of achieving similar error to traditional methods, while greatly simplifying the process by automatically handling redundancy, joint limits, and acceleration / deceleration profiles. The basic technique is extended to avoid obstacles by augmenting the input to the network with information about the nearest obstacles. Results are shown both in simulation and on a real robot via sim-to-real transfer of the learned policy. We show that it is possible to achieve sub-centimeter accuracy, both in simulation and the real world, with a moderate amount of training.
翻译:控制机器人操纵器的主导方法使用手工制作的不同方程式,利用某种形式的反动动能/动态。我们提议一个简单、多功能的联合级控制器,完全排除差异方程式。一个通过无模型强化学习培训的深神经网络用于绘制从任务空间到联合空间的地图。实验显示能够实现与传统方法相似的错误的方法,同时通过自动处理冗余、联合限制和加速/加速/减速剖面图大大简化程序。基本技术通过使用最接近的障碍信息来增加网络输入,从而避免障碍。结果在模拟中和通过学习政策的模拟到现实的转换来显示真实机器人的结果。我们显示,在模拟和现实世界中,通过适度的培训都有可能达到次中位精确度。