We consider energy minimization for data-intensive applications run on large number of servers, for given performance guarantees. We consider a system, where each incoming application is sent to a set of servers, and is considered to be completed if a subset of them finish serving it. We consider a simple case when each server core has two speed levels, where the higher speed can be achieved by higher power for each core independently. The core selects one of the two speeds probabilistically for each incoming application request. We model arrival of application requests by a Poisson process, and random service time at the server with independent exponential random variables. Our model and analysis generalizes to today's state-of-the-art in CPU energy management where each core can independently select a speed level from a set of supported speeds and corresponding voltages. The performance metrics under consideration are the mean number of applications in the system and the average energy expenditure. We first provide a tight approximation to study this previously intractable problem and derive closed form approximate expressions for the performance metrics when service times are exponentially distributed. Next, we study the trade-off between the approximate mean number of applications and energy expenditure in terms of the switching probability.
翻译:我们考虑的是数据密集型应用在大量服务器上实现能源最小化,以提供性能保障。我们考虑的是每个输入的应用程序都发送到一组服务器的系统,如果其中的一个子组完成服务,则被视为已完成。我们考虑的是每个服务器核心有两个速度水平的简单案例,每个核心的高速可以独立地通过更高功率实现。核心为每个收到的应用请求选择了两种速度之一的概率。我们用一个 Poisson 程序来模拟应用请求的抵达,并以独立的指数随机变量来模拟服务器的随机服务时间。我们的模型和分析概括了当今CPU能源管理中的最新水平,其中每个核心可以独立地从一组支持的速度和相应的电压中选择一个速度水平。正在考虑的性能指标是系统中应用的平均数量和平均能源支出。我们首先提供一种紧密的近似度,以研究这个以前棘手的问题,并在服务时间的指数分布时为性能指标得出封闭的近似值。接下来,我们研究应用的近似平均值与能源支出之间的折中值。