Accurate prediction of physical interaction outcomes is a crucial component of human intelligence and is important for safe and efficient deployments of robots in the real world. While there are existing vision-based intuitive physics models that learn to predict physical interaction outcomes, they mostly focus on generating short sequences of future frames based on physical properties (e.g. mass, friction and velocity) extracted from visual inputs or a latent space. However, there is a lack of intuitive physics models that are tested on long physical interaction sequences with multiple interactions among different objects. We hypothesize that selective temporal attention during approximate mental simulations helps humans in physical interaction outcome prediction. With these motivations, we propose a novel scheme: Physical Interaction Prediction via Mental Simulation with Span Selection (PIP). It utilizes a deep generative model to model approximate mental simulations by generating future frames of physical interactions before employing selective temporal attention in the form of span selection for predicting physical interaction outcomes. To evaluate our model, we further propose the large-scale SPACE+ dataset of synthetic videos with long sequences of three prime physical interactions in a 3D environment. Our experiments show that PIP outperforms human, baseline, and related intuitive physics models that utilize mental simulation. Furthermore, PIP's span selection module effectively identifies the frames indicating key physical interactions among objects, allowing for added interpretability.
翻译:对物理互动结果的准确预测是人类智力的重要组成部分,对于在现实世界中安全有效地部署机器人非常重要。虽然现有基于视觉的直观物理模型可以学会预测物理互动结果,但它们主要侧重于根据从视觉投入或潜伏空间中提取的物理特性(如质量、摩擦和速度)生成未来框架的短序。然而,缺乏在长物理互动序列中测试与不同物体之间多重互动的直观物理模型。我们假设在近似精神模拟过程中有选择性的时间关注有助于人类进行物理互动结果预测。我们出于这些动机,提出了一个新的方案:通过与斯潘选择(PIP)进行精神模拟来进行物理互动预测。我们利用一个深层次的基因模型来模拟未来物理互动框架,然后在预测物理互动结果时采用选择性时间关注的形式进行选择。为了评估我们的模型,我们进一步建议使用大规模空间+合成数据集,在3D环境中进行三种主要物理互动结果的长序列中进行模拟。我们提出的新的方案提出了一个新的方案:通过与斯潘选择(PIP)进行物理模拟模型,从而确定关键物理模型的模型。