题目:* Spatio-Temporal Alignments: Optimal transport through space and time
摘要:
比较在空间和时间上定义的数据是出了名的困难,因为它涉及到对空间和时间可变性进行量化,同时还要考虑到数据的时间结构。动态时间扭曲(DTW)计算时间序列与时间顺序之间的最佳对齐,但在本质上不考虑空间变化。摘要提出了一种新的时间-空间比对算法,该算法利用正则化最优转移来处理时间样本间的空间差异。我们的时间对齐是通过一种称为软DTW的平滑变式来处理的,为此我们证明了一个新的性质:软DTW随时间的变化呈二次增长。我们使用的软dtw中的代价矩阵是用不平衡的OT来计算的,以处理观测值不是归一化概率的情况。手写字母和脑成像数据的实验证实了我们的理论发现,并说明STA作为时空数据的不同有效性。
作者简介:
Hicham Janati,三年级博士生,目前的工作是为神经科学设计具有最佳传输效果的机器学习模型。个人主页:https://hichamjanati.github.io/
Marco Cuturi,谷歌大脑研究科学家,巴黎理工学院CREST-ENSAE统计学教授,研究兴趣:机器学习,最优运输,优化,时间序列,内核。个人主页:http://marcocuturi.net/