Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part. The designed physics operator on the nodes restricts the output space of the edge neural network to be exactly the pairwise interaction. We test the proposed methodology on multiple datasets and demonstrate that it achieves considerably better performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets than existing purely data-driven models. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence guide the design of materials with targeted properties.
翻译:在科学和工程学中,互换粒子系统发挥着关键作用。 获取管理粒子互动法对于全面理解这些系统至关重要。 但是, 内在系统的复杂性使得粒子互动在许多情况下隐藏起来。 机器学习方法有可能通过将实验与数据分析方法相结合来学习互动粒子系统的行为。 然而, 多数现有的算法侧重于在粒子一级学习动能。 学习双向互动, 例如双向力量或双向潜在能量, 仍然是一个开放的挑战。 在此, 我们提议一种算法, 来调整图形网络框架, 它包含一个边际部分, 学习对称互动, 并且有一个节点部分来模拟粒子级别的动态。 与使用神经网络和数据分析方法的现有方法不同, 我们设计了一个确定性操作器, 将边缘神经网络的输出空间限制在对齐的相互作用上。 我们测试了多个数据集上的拟议方法, 并表明它能够大大改进了正确推断对称互动的性能, 同时也与所有粒子级层面的模拟性互动性能相匹配, 与使用神经系统网络的现有设计法的基基质互动法相比, 能够更好地支持所有设计、 以纯数据驱动的模型。