We address the problem of output prediction, ie. designing a model for autonomous nonlinear systems capable of forecasting their future observations. We first define a general framework bringing together the necessary properties for the development of such an output predictor. In particular, we look at this problem from two different viewpoints, control theory and data-driven techniques (machine learning), and try to formulate it in a consistent way, reducing the gap between the two fields. Building on this formulation and problem definition, we propose a predictor structure based on the Kazantzis-Kravaris/Luenberger (KKL) observer and we show that KKL fits well into our general framework. Finally, we propose a constructive solution for this predictor that solely relies on a small set of trajectories measured from the system. Our experiments show that our solution allows to obtain an efficient predictor over a subset of the observation space.
翻译:我们处理输出预测问题,即设计一个能够预测未来观测结果的自主非线性系统模型。我们首先确定一个总框架,将开发这种输出预测结果的必要特性汇集在一起。特别是,我们从两个不同的角度来看待这个问题,即控制理论和数据驱动技术(机器学习),并试图以一致的方式来拟订这个问题,缩小这两个领域之间的差距。我们根据这一公式和问题定义,提出了一个基于Kazantzis-Kravaris/Luenberger(KKL)观察者的预测结构,我们表明KKL非常适合我们的总框架。最后,我们为这一完全依赖从系统测量出来的一小套轨迹的预测结果提出了一个建设性的解决方案。我们的实验表明,我们的解决办法可以对观测空间的一组部分获得有效的预测结果。