We prove a novel method for the embedding of a 3-fold rotationally symmetric sphere-type mesh onto a subset of the plane with 3-fold rotational symmetry. The embedding is free-boundary with the only additional constraint on the image set is that its translations tile the plane, in turn this forces the angles at the embedding of the branch points in the construction. These parameterizations are optimal with respect to the Dirichlet energy functional defined on simplicial complexes. Since the parameterization is over a fixed area domain, it is conformal (i.e. a minimizer of the LSCM energy). The embedding is done by a novel construction of a torus from 63 copies of the original sphere. As a foundation for this result we first prove the optimality of the embedding of disk-type meshes onto special types of triangles in the plane, and rectangles. The embedding of the 3-fold symmetric torus is full rank and so cannot be reduced by simpler constructions. 3-fold symmetric surfaces appear in nature, for example the surface of the 3-fold symmetric proteins PIEZO1 and PIEZO2 which are an important target of current studies.
翻译:我们证明将三倍旋转对称球球型网格嵌入具有三倍旋转对称性对称的平面子子组的新颖方法。 嵌入是自由界的, 对图像集唯一的额外限制是其翻译为平面的平面, 反过来, 使在构造中嵌入分支点的角度成为硬盘。 这些参数化对于在简化复合体上定义的 Dirichlet 能量功能来说是最佳的。 由于参数化是在固定区域之上, 它是相符合的( 即 LSCM 能量的最小化器 ) 。 嵌入是通过从原始区域63 副本中新建的 托鲁斯来完成的。 作为这个结果的基础, 我们首先证明将磁盘型色色嵌入在平面特殊类型的三角形和矩形上的最佳性。 3倍对称矩形的嵌入是全级的, 因此无法通过更简单的构造来缩小 。 3 3 3 度的平调表面表面是自然中显示的 PIEIE1 目标面, 和Z 重要表面是一号 的图象 。