We give new polynomial lower bounds for a number of dynamic measure problems in computational geometry. These lower bounds hold in the Word-RAM model, conditioned on the hardness of either 3SUM, APSP, or the Online Matrix-Vector Multiplication problem [Henzinger et al., STOC 2015]. In particular we get lower bounds in the incremental and fully-dynamic settings for counting maximal or extremal points in R^3, different variants of Klee's Measure Problem, problems related to finding the largest empty disk in a set of points, and querying the size of the i'th convex layer in a planar set of points. We also answer a question of Chan et al. [SODA 2022] by giving a conditional lower bound for dynamic approximate square set cover. While many conditional lower bounds for dynamic data structures have been proven since the seminal work of Patrascu [STOC 2010], few of them relate to computational geometry problems. This is the first paper focusing on this topic. Most problems we consider can be solved in O(n log n) time in the static case and their dynamic versions have only been approached from the perspective of improving known upper bounds. One exception to this is Klee's measure problem in R^2, for which Chan [CGTA 2010] gave an unconditional ${\Omega}(\sqrt{n})$ lower bound on the worst-case update time. By a similar approach, we show that such a lower bound also holds for an important special case of Klee's measure problem in R^3 known as the Hypervolume Indicator problem, even for amortized runtime in the incremental setting.


翻译:在计算几何中,我们为一些动态测量问题提供了新的单体下下限。 这些下限在 Word-RAM 模型中存在, 以 3SUM、 APSP 或在线矩阵- Vector 乘法问题[ Hennger 等, STOC 2015] 的硬度为条件。 特别是, 在 RQ3 中, 计算最大点或极端点的递增和完全动态设置下限。 Klee 的 度量问题的不同变量, 与在一组点中找到最大空磁盘有关的问题, 以及在一组点中查询 i'th convex 层的大小。 我们还回答Chan et al. [SODO 2022] 的硬度问题, 对动态数据结构的许多条件下限自 Patrascu [STOC 2010] 的半调工作以来就已经得到证明, 但其中很少有与计算无条件度方法问题有关的。 这是关于这个主题的第一份文件。 我们认为, 在2010年的O(n) 最坏的卷内, 最坏的 converial vial view cal view cal view creal vial view view view 中, view creal view cal view view view cisal view viol viol view view view view views view view view view view viol view views view

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员