We study the maximum geometric independent set and clique problems in the streaming model. Given a collection of geometric objects arriving in an insertion only stream, the aim is to find a subset such that all objects in the subset are pairwise disjoint or intersect respectively. We show that no constant factor approximation algorithm exists to find a maximum set of independent segments or $2$-intervals without using a linear number of bits. Interestingly, our proof only requires a set of segments whose intersection graph is also an interval graph. This reveals an interesting discrepancy between segments and intervals as there does exist a $2$-approximation for finding an independent set of intervals that uses only $O(\alpha(\mathcal{I})\log |\mathcal{I}|)$ bits of memory for a set of intervals $\mathcal{I}$ with $\alpha(\mathcal{I})$ being the size of the largest independent set of $\mathcal{I}$. On the flipside we show that for the geometric clique problem there is no constant-factor approximation algorithm using less than a linear number of bits even for unit intervals. On the positive side we show that the maximum geometric independent set in a set of axis-aligned unit-height rectangles can be $4$-approximated using only $O(\alpha(\mathcal{R})\log |\mathcal{R}|)$ bits.
翻译:我们研究流模式中的最大几何独立设置和组别问题。 如果有一组到达插入流中的几何天体, 目标是找到一个子集, 使子集中的所有天体都是对称脱节或互交的。 我们显示没有一个恒定的系数近似算法可以找到一组最大独立的区块或$- 间距, 而没有使用线性数位数。 有趣的是, 我们的证据只要求一组块块的大小, 其交叉图也是一个间距图 。 这显示了部分和间隔之间的一个有趣的差异 {, 因为存在一个 $2 的匹配值, 以寻找一组独立的间隔, 仅使用 $(\ alpha (mathcal{ I})\ log *mathcal{I\\\\\\\\\\\\ \ 美元) 的值位数。 我们的直径直径偏右方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平面。