This paper develops simple feed-forward neural networks that achieve the universal approximation property for all continuous functions with a fixed finite number of neurons. These neural networks are simple because they are designed with a simple and computable continuous activation function $\sigma$ leveraging a triangular-wave function and the softsign function. We prove that $\sigma$-activated networks with width $36d(2d+1)$ and depth $11$ can approximate any continuous function on a $d$-dimensional hypercube within an arbitrarily small error. Hence, for supervised learning and its related regression problems, the hypothesis space generated by these networks with a size not smaller than $36d(2d+1)\times 11$ is dense in the continuous function space $C([a,b]^d)$ and therefore dense in the Lebesgue spaces $L^p([a,b]^d)$ for $p\in [1,\infty)$. Furthermore, classification functions arising from image and signal classification are in the hypothesis space generated by $\sigma$-activated networks with width $36d(2d+1)$ and depth $12$, when there exist pairwise disjoint bounded closed subsets of $\mathbb{R}^d$ such that the samples of the same class are located in the same subset. Finally, we use numerical experimentation to show that replacing the ReLU activation function by ours would improve the experiment results.
翻译:本文开发了简单的向导神经网络, 为所有具有固定数量神经元的连续功能实现通用近似属性。 这些神经网络很简单, 因为它们设计为简单和可计算的持续激活功能$\sgma$, 利用三角波函数和软信号函数。 我们证明$\sgma$, 宽度为36d( 2d+1) 美元和深度为 $11 $ 的光学网络可以对任意的小错误中以美元为维度超立方的任何连续功能进行近似。 因此, 由于受监督的学习及其相关的回归问题, 这些规模不小于36d( 2d+1)\time的网络产生的假设空间非常简单和可计算的持续激活功能$ $\sgmagma$, 因此, 在 Lebesguue 空间中密度为$L%p( 1, b) 和 深度为$1, 。 此外, 由图像和信号分类产生的分类功能在假设空间中由 $\ grima 美元( 2d+1) 生成的U 网络产生的假设空间中产生, 11美元生成的假设空间空间空间,, 以36d( bad+1) 美元 将显示 的基数的基数的基数为基数 。