Local differential privacy has recently received increasing attention from the statistics community as a valuable tool to protect the privacy of individual data owners without the need of a trusted third party. Similar to the classical notion of randomized response, the idea is that data owners randomize their true information locally and only release the perturbed data. Many different protocols for such local perturbation procedures can be designed. In most estimation problems studied in the literature so far, however, no significant difference in terms of minimax risk between purely non-interactive protocols and protocols that allow for some amount of interaction between individual data providers could be observed. In this paper we show that for estimating the integrated square of a density, sequentially interactive procedures improve substantially over the best possible non-interactive procedure in terms of minimax rate of estimation. In particular, in the non-interactive scenario we identify an elbow in the minimax rate at $s=\frac34$, whereas in the sequentially interactive scenario the elbow is at $s=\frac12$. This is markedly different from both, the case of direct observations, where the elbow is well known to be at $s=\frac14$, as well as from the case where Laplace noise is added to the original data, where an elbow at $s= \frac94$ is obtained. We also provide adaptive estimators that achieve the optimal rate up to log-factors, we draw connections to non-parametric goodness-of-fit testing and estimation of more general integral functionals and conduct a series of numerical experiments. The fact that a particular locally differentially private, but interactive, mechanism improves over the simple non-interactive one is also of great importance for practical implementations of local differential privacy.


翻译:最近,统计界日益关注当地差异隐私,认为这是保护个人数据拥有者隐私的宝贵工具,不需要信任第三方。类似于随机响应的典型概念,其理念是数据所有者在当地随机随机地发布其真实信息,而只发布受扰动的数据。对于这种本地扰动程序,可以设计许多不同的协议。在迄今为止研究的文献中,大多数小问题在纯非互动协议和协议之间没有明显区别,这些协议允许个人数据提供者进行某种程度的互动。在本文中,我们表明,在估算一个密度的综合正方形时,按顺序互动程序大大改进了可能的最佳的非互动程序,在估算的迷你速率方面,只有发布数据。在非互动情况下,我们确定小通速率的肘值为$z ⁇ frac34美元,而在依次的互动假设中,肘值为$sfrexc12美元。这与直接观测明显不同,在估算一个事实中,手肘是已知的简单正弦数,14的按次互动程序大大改进了最佳的不互动性程序。我们从最初的汇率到最接近的汇率的汇率,也提供了最优的汇率。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年6月30日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员