Reinforcement Learning (RL) and Imitation Learning (IL) have made great progress in robotic control in recent years. However, these methods show obvious deterioration for new tasks that need to be completed through new combinations of actions. RL methods heavily rely on reward functions that cannot generalize well for new tasks, while IL methods are limited by expert demonstrations which do not cover new tasks. In contrast, humans can easily complete these tasks with the fragmented knowledge learned from task-agnostic experience. Inspired by this observation, this paper proposes a task-agnostic learning method (TAL for short) that can learn fragmented knowledge from task-agnostic data to accomplish new tasks. TAL consists of four stages. First, the task-agnostic exploration is performed to collect data from interactions with the environment. The collected data is organized via a knowledge graph. Compared with the previous sequential structure, the knowledge graph representation is more compact and fits better for environment exploration. Second, an action feature extractor is proposed and trained using the collected knowledge graph data for task-agnostic fragmented knowledge learning. Third, a candidate action generator is designed, which applies the action feature extractor on a new task to generate multiple candidate action sets. Finally, an action proposal is designed to produce the probabilities for actions in a new task according to the environmental information. The probabilities are then used to select actions to be executed from multiple candidate action sets to form the plan. Experiments on a virtual indoor scene show that the proposed method outperforms the state-of-the-art offline RL method: CQL by 35.28% and the IL method: BC by 22.22%.


翻译:强化学习(RL)和模拟学习(IL)近年来在机器人控制方面取得了巨大的进步。然而,这些方法显示,需要通过新的行动组合完成的新任务明显恶化。这些方法严重依赖奖励功能,这些功能无法对新任务进行概括化,而 IL 方法则受到专家演示的限制,这些演示并不包含新的任务。相比之下,人类能够轻松完成这些任务,因为从任务不可知性经验中学到了零散的知识。受此观察的启发,本文件建议了一种任务不可知性学习方法(TAL 简称为短期),该方法可以从任务不可知性数据中学习零散的知识。TAL 由四个阶段组成。首先,任务不可知性探索是为了收集与环境互动的数据。所收集的数据通过知识图表组织起来,与先前的顺序结构相比,知识图的显示更加紧凑紧凑,更适合环境探索。第二,利用收集到的知识图表提取器来进行操作。第三,设计了一个从任务不可分解的数据操作器来完成新任务- Q- 。一个候选人动作生成器,在选择的动作中将动作方法中显示一个新的动作动作,在选择动作组中,在选择动作中,在选择动作中,在任务中,在任务中,在任务选择动作中,在任务中,将使用新的动作序列中将一个动作动作动作动作中,在任务选择一个动作动作中,在选择一个动作中,在任务选择一个动作序列中,在任务选择一个动作中将一个动作序列中将一个动作中将一个动作动作动作中,在新的动作中,以生成一个新的动作序列中,在新的动作序列中将一个动作中生成一个动作显示一个新的动作序列中,在新的动作中,在新的动作组中,在任务选择一个动作中显示一个动作序列中,在任务选择一个动作。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年11月27日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员