Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a two-faceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. For example, on the Rain100L, GoPro and DND datasets, we obtain PSNR gains of 4 dB, 0.81 dB and 0.21 dB, respectively, compared to the state-of-the-art. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.


翻译:图像恢复任务要求在恢复图像时在空间细节和高背景信息之间保持复杂的平衡。 在本文件中, 我们提出一个新的协同设计, 以优化平衡这些相竞目标。 我们的主要建议是一个多阶段架构, 逐步学习退化投入的恢复功能, 从而将整个恢复进程分解为更易于管理的步骤。 具体地说, 我们的模型首先使用编码器解码器结构来学习背景特征, 然后再将其与保留本地信息的高分辨率分支结合起来。 在每一个阶段, 我们推出一个新型的全像素适应设计, 利用现场监管的关注来重新权衡本地特征。 这种多阶段架构中的一个关键要素是不同阶段之间的信息交流。 为此, 我们提出一个两面化的方法, 信息不仅从早期到后阶段相继交流, 特性处理区块之间的横向联系也避免信息丢失。 由此产生的紧密相连的多阶段架构, 以 MPRNet 命名为MPRNet, 在十种数据设置上带来强大的绩效收益, 包括图像解排、 PRODRA 和 DB 之前的 DB 。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员