Various combinations of cameras enrich computational photography, among which reference-based superresolution (RefSR) plays a critical role in multiscale imaging systems. However, existing RefSR approaches fail to accomplish high-fidelity super-resolution under a large resolution gap, e.g., 8x upscaling, due to the lower consideration of the underlying scene structure. In this paper, we aim to solve the RefSR problem in actual multiscale camera systems inspired by multiplane image (MPI) representation. Specifically, we propose Cross-MPI, an end-to-end RefSR network composed of a novel plane-aware attention-based MPI mechanism, a multiscale guided upsampling module as well as a super-resolution (SR) synthesis and fusion module. Instead of using a direct and exhaustive matching between the cross-scale stereo, the proposed plane-aware attention mechanism fully utilizes the concealed scene structure for efficient attention-based correspondence searching. Further combined with a gentle coarse-to-fine guided upsampling strategy, the proposed Cross-MPI can achieve a robust and accurate detail transmission. Experimental results on both digitally synthesized and optical zoom cross-scale data show that the Cross-MPI framework can achieve superior performance against the existing RefSR methods and is a real fit for actual multiscale camera systems even with large-scale differences.


翻译:摄影机的各种组合使计算摄影丰富,其中基于参考的超级分辨率(RefSR)在多尺度成像系统中发挥着关键作用,然而,现有的RefSR方法未能在一个大型分辨率差距下实现高非性超级分辨率,例如,8x升幅,原因是对基础场景结构的考虑较少。在本文件中,我们的目标是在多平板图像(MPI)代表制的启发下,解决实际多尺度照相机系统中的RefSR问题。具体地说,我们提议Cross-MPI,一个端到端的RefSR网络,由新颖的平面注意到的MPI机制组成,一个多尺度制导的上层放大模版以及一个超级分辨率(SR)合成和聚合模块。拟议中的平面观察机制不是直接和详尽地匹配跨尺度的立体结构,而是充分利用隐蔽的场景结构,以便高效地进行基于注意的通信搜索。此外,还提议Cros-MPI,一个由新的平面注意到注意的MPI机制,可以实现一个可靠和准确的超尺度的超级的图像模块,同时显示现有的数字空间合成系统。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员