Central to the application of neural networks in image restoration problems, such as single image super resolution, is the choice of a loss function that encourages natural and perceptually pleasing results. A popular choice for a loss function is a pre-trained network, such as VGG and LPIPS, which is used as a feature extractor for computing the difference between restored and reference images. However, such an approach has multiple drawbacks: it is computationally expensive, requires regularization and hyper-parameter tuning, and involves a large network trained on an unrelated task. In this work, we explore the question of what makes a good loss function for an image restoration task. First, we observe that a single natural image is sufficient to train a lightweight feature extractor that outperforms state-of-the-art loss functions in single image super resolution, denoising, and JPEG artefact removal. We propose a novel Multi-Scale Discriminative Feature (MDF) loss comprising a series of discriminators, trained to penalize errors introduced by a generator. Second, we show that an effective loss function does not have to be a good predictor of perceived image quality, but instead needs to be specialized in identifying the distortions for a given restoration method.


翻译:神经网络在图像恢复问题(如单一图像超分辨率)中应用神经网络的核心是选择一种鼓励自然和感知上令人愉快的结果的丢失功能。对损失函数的流行选择是预先训练的网络,如VGG和LPIPS,这是用来计算恢复图像和参考图像差异的特征提取器。然而,这种方法有多重缺点:它计算成本昂贵,需要正规化和超参数调制,并涉及一个在不相关任务上受过训练的大型网络。在这项工作中,我们探索了为图像恢复任务提供良好损失函数的是什么问题。首先,我们观察到,单一自然图像的简单特征提取器足以在单个图像超分辨率、去除音化和JPEG Artefact 去除中,形成一个超越最先进的损失功能。我们提出了一个新的多级差异特性损失,包括一系列歧视者,受过训练以惩罚发电机引入的错误。第二,我们表明,有效的损失功能不必成为一种清晰的图像修复方法,而是需要确定一种特殊的修复方法。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimizing Deeper Transformers on Small Datasets
Arxiv
0+阅读 · 2021年5月19日
Arxiv
4+阅读 · 2018年3月23日
VIP会员
Top
微信扫码咨询专知VIP会员