Cities are continuously evolving human settlements. Our cities are under strain in an increasingly urbanized world, and planners, decision-makers, and communities must be ready to adapt. Data is an important resource for municipal administration. Some technologies aid in the collection, processing, and visualization of urban data, assisting in the interpretation and comprehension of how urban systems operate. The relationship between data analytics and smart cities has come to light in recent years as interest in both has grown. A sophisticated network of interconnected systems, including planners and inhabitants, is what is known as a smart city. Data analysis has the potential to support data-driven decision-making in the context of smart cities. Both urban managers and residents are becoming more interested in city dashboards. Dashboards may collect, display, analyze, and provide information on regional performance to help smart cities development having sustainability. In order to assist decision-making processes and enhance the performance of cities, we examine how dashboards might be used to acquire accurate and representative information regarding urban challenges. This chapter culminates Data Analytics on key indicators for the city's urban services and dashboards for leadership and decision-making. A single web page with consolidated information, real-time data streams pertinent to planners and decision-makers as well as residents' everyday lives, and site analytics as a method to assess user interactions and preferences are among the proposals for urban dashboards. Keywords: -Dashboard, data analytics, smart city, sustainability.


翻译:城市正在不断演变的人类住区。在日益城市化的世界中,我们的城市处于紧张之中,规划者、决策者和社区必须准备适应。数据是市政管理的重要资源。在城市数据的收集、处理和可视化方面,有些技术帮助了城市数据的收集、处理和可视化,协助了对城市系统如何运作的解释和理解。近年来,随着对两个城市的兴趣日益增长,数据分析与智能城市之间的关系也逐渐显现出来。一个由包括规划者和居民在内的相互连接的系统组成的复杂网络是一个智能城市。数据分析有可能支持智能城市背景下的数据驱动决策。城市管理人员和居民都对城市仪表盘越来越感兴趣。一个智能网页可以收集、展示、分析并提供区域业绩信息,帮助智能城市系统的可持续性发展。为了协助决策进程和提高城市绩效,我们研究了如何利用仪表板获得关于城市挑战的准确和有代表性的信息。本章将数据分析用于城市服务的关键指标和领导和决策的仪表板。城市管理人员和居民对仪表板越来越感兴趣。一个具有智能网页的网页,一个用户用户选择,一个与城市决策系统之间的实际数据互动,作为城市数据流,一个与数据流,一个与城市数据流,一个与数据流的链接。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
244+阅读 · 2022年8月31日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
35+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
【2022新书】Python数据分析第三版,579页pdf
专知会员服务
244+阅读 · 2022年8月31日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员