The current high-fidelity generation and high-precision detection of DeepFake images are at an arms race. We believe that producing DeepFakes that are highly realistic and ``detection evasive'' can serve the ultimate goal of improving future generation DeepFake detection capabilities. In this paper, we propose a simple yet powerful pipeline to reduce the artifact patterns of fake images without hurting image quality by performing implicit spatial-domain notch filtering. We first demonstrate that frequency-domain notch filtering, although famously shown to be effective in removing periodic noise in the spatial domain, is infeasible for our task at hand due to manual designs required for the notch filters. We, therefore, resort to a learning-based approach to reproduce the notch filtering effects, but solely in the spatial domain. We adopt a combination of adding overwhelming spatial noise for breaking the periodic noise pattern and deep image filtering to reconstruct the noise-free fake images, and we name our method DeepNotch. Deep image filtering provides a specialized filter for each pixel in the noisy image, producing filtered images with high fidelity compared to their DeepFake counterparts. Moreover, we also use the semantic information of the image to generate an adversarial guidance map to add noise intelligently. Our large-scale evaluation on 3 representative state-of-the-art DeepFake detection methods (tested on 16 types of DeepFakes) has demonstrated that our technique significantly reduces the accuracy of these 3 fake image detection methods, 36.79% on average and up to 97.02% in the best case.


翻译:目前,深藏层图像的高度纤维化生成和高精密检测目前是一场军备竞赛。我们认为,制作高度现实和“检测蒸发”的深层假象,可以达到改进下一代深海发现能力的最终目标。在本文中,我们建议建立一个简单而有力的管道,通过进行隐性空间-外观过滤,减少假图像的造物型,同时不伤害图像质量。我们首先表明,虽然有名的显示在空间域内消除定期噪音的有效方法,但频率-隐性过滤中仍然没有留下痕迹,但对于我们手头的任务来说是不可行的,因为需要手动设计非常现实和“检测蒸发”的。因此,我们采用基于学习的方法复制暗淡过滤效应,但仅限于在空间域内。我们采用了一种组合,通过增加压倒性空间噪音来打破周期的噪音模式和深层图像过滤,以重建无噪音的假图像,我们命名了方法。深层图像过滤为每个焦点提供了最佳的过滤器,而深层图像的精确度则是我们用高精确的筛选图像类型制作的深层探测图像,我们又使用高清晰的精确度评估。在深藏图像中,我们用高清晰的精确的精确的精确度评估方法。在深度的图像中,我们用了深度的精确度上,我们用解的精确度评估中,也增加了我们用了。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
16+阅读 · 2021年3月2日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员