The quantification of uncertainty is important for the adoption of machine learning, especially to reject out-of-distribution (OOD) data back to human experts for review. Yet progress has been slow, as a balance must be struck between computational efficiency and the quality of uncertainty estimates. For this reason many use deep ensembles of neural networks or Monte Carlo dropout for reasonable uncertainty estimates at relatively minimal compute and memory. Surprisingly, when we focus on the real-world applicable constraint of $\leq 1\%$ false positive rate (FPR), prior methods fail to reliably detect OOD samples as such. Notably, even Gaussian random noise fails to trigger these popular OOD techniques. We help to alleviate this problem by devising a simple adversarial training scheme that incorporates an attack of the epistemic uncertainty predicted by the dropout ensemble. We demonstrate this method improves OOD detection performance on standard data (i.e., not adversarially crafted), and improves the standardized partial AUC from near-random guessing performance to $\geq 0.75$.
翻译:对不确定性进行量化对于采用机器学习十分重要,特别是拒绝将分配外数据反馈给人类专家进行审查。但进展缓慢,因为必须在计算效率与不确定性估计质量之间取得平衡。为此原因,许多人使用神经网络的深度集合或蒙特卡洛辍学来以相对最低的计算和记忆来进行合理的不确定性估计。令人惊讶的是,当我们把重点放在实际世界适用的1美元假正率的限制时,先前的方法无法可靠地检测OOD样本本身。值得注意的是,甚至高山随机噪音也未能触发这些流行的OOD技术。我们帮助缓解这一问题,设计了一个简单的对抗性培训计划,纳入对辍学共同体预测的成型不确定性的攻击。我们证明这种方法提高了OD在标准数据(即非对抗性制成的)上的检测性能,并将标准性能(即,非对抗性能)的标准化部分ACUC从近核假设性能提高到0.75美元。