We prove distributional convergence for a family of random processes on $\mathbb{Z}$, which we call asymmetric cooperative motions. The model generalizes the "totally asymmetric hipster random walk" introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, 2020]. We present a novel approach based on connecting a temporal recurrence relation satisfied by the cumulative distribution functions of the process to the theory of finite difference schemes for Hamilton-Jacobi equations [Crandall and Lyons, 1984]. We also point out some surprising lattice effects that can persist in the distributional limit, and propose several generalizations and directions for future research.
翻译:我们证明一个随机过程的组合在分配上趋于一致,我们称之为不对称合作动议。模型概括了在[Addario-Berry、Cairns、Devroye、Kerriou和Mitchell,2020年]中引入的“完全不对称的臀部随机行走 ” 。我们提出了一种新颖的方法,将过程累积分布功能所满足的时间重复关系与汉密尔顿-贾科比方程的有限差别计划理论联系起来[Crandall和Ryons,1984年]。我们还指出了在分配限度中可能持续存在的一些惊人的拉蒂效应,并为未来的研究提出了几种概括和方向。