We generalize the "indirect learning" technique of Furst et. al., 1991 to reduce from learning a concept class over a samplable distribution $\mu$ to learning the same concept class over the uniform distribution. The reduction succeeds when the sampler for $\mu$ is both contained in the target concept class and efficiently invertible in the sense of Impagliazzo & Luby, 1989. We give two applications. - We show that AC0[q] is learnable over any succinctly-described product distribution. AC0[q] is the class of constant-depth Boolean circuits of polynomial size with AND, OR, NOT, and counting modulo $q$ gates of unbounded fanins. Our algorithm runs in randomized quasi-polynomial time and uses membership queries. - If there is a strongly useful natural property in the sense of Razborov & Rudich 1997 -- an efficient algorithm that can distinguish between random strings and strings of non-trivial circuit complexity -- then general polynomial-sized Boolean circuits are learnable over any efficiently samplable distribution in randomized polynomial time, given membership queries to the target function
翻译:我们普及了Furst等人(1991年)的“间接学习”技术,以便从学习一个概念类来学习一个概念类来研究一个可推广的分布 $\ mu$,到学习统一分布的同一概念类。当美元取样器包含在目标概念类中,并且在Impagliazzo & Luby(Impagliazzo & Luby,1989年)的意义上有效忽略了美元,我们给出了两种应用。 - 我们显示AC0[q] 对任何简洁描述的产品分配来说都是可以学习的。 AC0[q] 是一个与和和A、 OR、 NO、 和计算无限制扇形的摩杜拉 $q$ 门的常深布利亚电路类。我们的算法运行随机化准准准准极准准准极多极时段,并使用成员查询方法。 如果在Razborov & Rudich 1997年的意义上有非常有用的自然属性,那么一种有效的算法,可以区分随机的线和非三角电路的复杂性-然后一般的多波级波级波级波级波段的波段,那么,那么,则在任何有随机的分布式的分布上可以学习任何有效的分配的多式分配,那么,则会断断式的波段分式的波段分式的波段的计算。