The paper analyses cointegration in vector autoregressive processes (VARs) for the cases when both the number of coordinates, $N$, and the number of time periods, $T$, are large and of the same order. We propose a way to examine a VAR of order $1$ for the presence of cointegration based on a modification of the Johansen likelihood ratio test. The advantage of our procedure over the original Johansen test and its finite sample corrections is that our test does not suffer from over-rejection. This is achieved through novel asymptotic theorems for eigenvalues of matrices in the test statistic in the regime of proportionally growing $N$ and $T$. Our theoretical findings are supported by Monte Carlo simulations and an empirical illustration. Moreover, we find a surprising connection with multivariate analysis of variance (MANOVA) and explain why it emerges.
翻译:本文分析了在坐标数、美元和时间段数都很大的情况下,在矢量自动递减过程中的结合情况,文件分析了在坐标数、美元和时间段数都相同的情况下的合并情况。我们建议了一种方法,根据对约翰森概率比测试的修改,对混合情况进行1美元的递减情况审查。我们的程序比原约翰森试验及其有限的抽样校正的优势是,我们的测试并不受到过度反射的影响。这是通过测试统计中按比例增长的N美元和T美元制度中的矩阵的均值的新的零用理论实现的。我们的理论结论得到了蒙特卡洛模拟和实验性说明的支持。此外,我们发现差异的多变分析(MANOVA)与差异的多变分析(MANOVA)有着惊人的联系,并解释了其出现的原因。