$\renewcommand{\Re}{\mathbb{R}}$ We develop a general randomized technique for solving "implic it" linear programming problems, where the collection of constraints are defined implicitly by an underlying ground set of elements. In many cases, the structure of the implicitly defined constraints can be exploited in order to obtain efficient linear program solvers. We apply this technique to obtain near-optimal algorithms for a variety of fundamental problems in geometry. For a given point set $P$ of size $n$ in $\Re^d$, we develop algorithms for computing geometric centers of a point set, including the centerpoint and the Tukey median, and several other more involved measures of centrality. For $d=2$, the new algorithms run in $O(n\log n)$ expected time, which is optimal, and for higher constant $d>2$, the expected time bound is within one logarithmic factor of $O(n^{d-1})$, which is also likely near optimal for some of the problems.
翻译:我们开发了一种一般随机技术来解决“implic it”线性编程问题, 集的制约因素由一组基本要素暗含地定义。 在许多情况下, 隐含定义的限制结构可以被利用, 以便获得高效的线性程序解答器。 我们应用这种技术来为几何中的各种基本问题获得近乎最佳的算法。 对于一个定点, 设定的大小为$( $) 的数值为$( $), 我们开发了计算一组点的几何中心的算法, 包括中点和 Tukey 中值, 以及其他一些涉及的中心度计量。 对于 $=2 美元, 新的算法以$( n\ log n) 的预期时间运行, 这是最理想的, 对于更高的恒定值 $( $) 2, 预计的时间约束在一个对数系数( $( $- d-1) ) 的范围内, 这对一些问题来说也是近乎最佳的。