Approximate combinatorial optimisation has emerged as one of the most promising application areas for quantum computers, particularly those in the near term. In this work, we focus on the quantum approximate optimisation algorithm (QAOA) for solving the Max-Cut problem. Specifically, we address two problems in the QAOA, how to select initial parameters, and how to subsequently train the parameters to find an optimal solution. For the former, we propose graph neural networks (GNNs) as an initialisation routine for the QAOA parameters, adding to the literature on warm-starting techniques. We show the GNN approach generalises across not only graph instances, but also to increasing graph sizes, a feature not available to other warm-starting techniques. For training the QAOA, we test several optimisers for the MaxCut problem. These include quantum aware/agnostic optimisers proposed in literature and we also incorporate machine learning techniques such as reinforcement and meta-learning. With the incorporation of these initialisation and optimisation toolkits, we demonstrate how the QAOA can be trained as an end-to-end differentiable pipeline.
翻译:近似组合组合优化已成为量子计算机最有希望的应用领域之一,特别是在近期。在这项工作中,我们侧重于解决最大产品问题的量子近似优化算法(QAOA),具体地说,我们解决了QAOA中的两个问题,即如何选择初始参数,以及随后如何培训参数以找到最佳解决办法。对于前者,我们提议将图形神经网络(GNNS)作为QAOA参数的初始化常规,添加关于热启动技术的文献。我们不仅展示GNN方法在图表实例中的通用性,而且展示增加图形大小,这是其他热启动技术所不具备的特征。关于培训QAOA,我们测试了几个关于最大产品问题的选修方法,其中包括在文献中建议的量意识/定量偏选方法,我们还采用了诸如强化和元学习等机器学习技术。在纳入这些初始化和优化工具后,我们演示QAOA的管道如何被培训为一种不同的最终工具。