Model initialisation is an important component of object tracking. Tracking algorithms are generally provided with the first frame of a sequence and a bounding box (BB) indicating the location of the object. This BB may contain a large number of background pixels in addition to the object and can lead to parts-based tracking algorithms initialising their object models in background regions of the BB. In this paper, we tackle this as a missing labels problem, marking pixels sufficiently away from the BB as belonging to the background and learning the labels of the unknown pixels. Three techniques, One-Class SVM (OC-SVM), Sampled-Based Background Model (SBBM) (a novel background model based on pixel samples), and Learning Based Digital Matting (LBDM), are adapted to the problem. These are evaluated with leave-one-video-out cross-validation on the VOT2016 tracking benchmark. Our evaluation shows both OC-SVMs and SBBM are capable of providing a good level of segmentation accuracy but are too parameter-dependent to be used in real-world scenarios. We show that LBDM achieves significantly increased performance with parameters selected by cross validation and we show that it is robust to parameter variation.
翻译:模型初始化是天体跟踪的一个重要组成部分。 跟踪算法通常提供序列的第一个框架和一个显示天体位置的捆绑框( BB) 。 这个 BB 可能包含大量除天体外的背景像素, 并可能导致基于部件的跟踪算法在 BB 的背景区域初始化其天体模型。 在本文中, 我们将此作为一个缺失的标签问题来解决, 标记离 BB 足够远的像素属于 BB 属于背景的像素, 并学习未知像素的标签。 三种技术, 单级 SVM (OC- SVM) 、 样本基础背景模型( SBBM) (基于像素样本的新背景模型) 和 学习基数数学(LBDM) (LBD) 可能包含大量的背景像素模型, 并针对问题进行调整。 我们用VOT2016 跟踪基准的左侧的交叉校验来评估这些参数。 我们的评估显示OC- SVMM 和 SBBM 能够提供良好的分解度, 但太依赖参数, 在真实的参数中显示我们所选择的测试的LDB 。