We propose an algorithm and a new method to tackle the classification problems. We propose a multi-output neural tree (MONT) algorithm, which is an evolutionary learning algorithm trained by the non-dominated sorting genetic algorithm (NSGA)-III. Since evolutionary learning is stochastic, a hypothesis found in the form of MONT is unique for each run of evolutionary learning, i.e., each hypothesis (tree) generated bears distinct properties compared to any other hypothesis both in topological space and parameter-space. This leads to a challenging optimisation problem where the aim is to minimise the tree-size and maximise the classification accuracy. Therefore, the Pareto-optimality concerns were met by hypervolume indicator analysis. We used nine benchmark classification learning problems to evaluate the performance of the MONT. As a result of our experiments, we obtained MONTs which are able to tackle the classification problems with high accuracy. The performance of MONT emerged better over a set of problems tackled in this study compared with a set of well-known classifiers: multilayer perceptron, reduced-error pruning tree, naive Bayes classifier, decision tree, and support vector machine. Moreover, the performances of three versions of MONT's training using genetic programming, NSGA-II, and NSGA-III suggest that the NSGA-III gives the best Pareto-optimal solution.


翻译:我们提出了一种算法和新的方法来解决分类问题。我们提出了一种多输出神经树(MONT)算法(MONT)算法(MONT),这是一种由非主流分类基因算法(NSGA)-III所培训的进化学习算法。由于进化学习是随机的,一种以MONT为形式的假设是每个进化学习过程所独有的,也就是说,产生的每个假设(树)与在地形空间和参数空间方面的任何其他假设相比,都具有不同的属性。这导致了一个具有挑战性的优化问题,其目的是最大限度地减少树的大小并最大限度地提高分类准确性。因此,对Pareto最优化的关切通过超量指标分析得到了解决。我们用九种基准分类学习问题来评价MONT的绩效。作为我们实验的结果,我们获得了能够以高度精确的方式解决分类问题的MONTT,与一系列众所周知的分类方法相比,这一系列研究所处理的问题表现得更好:多层次的跨层、缩小的螺旋曲直径、缩小的螺旋曲线曲线曲线曲线的精度的精确度的精确度的精确度问题。 因此, III的Bay Bay Bay-Bayles-III 和NSGAAAAAAAADR-DRDS-S-DARDS-DS-DS-DS-S-DS-S-S-S-DS-S-S-S-S-S-DAR-S-S-DAR-S-S-S-S-S-DAR-S-S-S-S-DAR-S-S-S-S-S-DAR-V-DAR-V-V-S-V-V-S-V-S-V-S-S-S-S-S-S-S-S-V-V-S-S-V-V-S-S-S-S-S-S-S-S-VGA-III-S-V-S-S-S-S-V-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-V-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员