We consider the trigonometric-like system of piecewise linear functions introduced recently by Daubechies, DeVore, Foucart, Hanin, and Petrova. We provide an alternative proof that this system forms a Riesz basis of $L_2([0,1])$ based on the Gershgorin theorem. We also generalize this system to higher dimensions $d>1$ by a construction, which avoids using (tensor) products. As a consequence, the functions from the new Riesz basis of $L_2([0,1]^d)$ can be easily represented by neural networks. Moreover, the Riesz constants of this system are independent of $d$, making it an attractive building block regarding future multivariate analysis of neural networks.
翻译:我们认为Daubechies、DeVore、Foucart、Hanin和Petrova最近引进的三维线性功能系统是三维线性功能系统。我们提供了另一个证据,证明该系统在Gershgorin理论基础上形成Riesz $2 ([0,1]美元)的Riesz基数。我们还通过一个避免使用(tensor)产品的建筑,将该系统推广到更高的维度1美元。因此,新的Riesz基数$2 ([0,1] 日元)的功能很容易被神经网络所代表。此外,该系统的Riesz常数独立于美元,成为未来对神经网络进行多变分析的有吸引力的建筑块。</s>