Suppose we are given an $n$-dimensional order-3 symmetric tensor $T \in (\mathbb{R}^n)^{\otimes 3}$ that is the sum of $r$ random rank-1 terms. The problem of recovering the rank-1 components is possible in principle when $r \lesssim n^2$ but polynomial-time algorithms are only known in the regime $r \ll n^{3/2}$. Similar "statistical-computational gaps" occur in many high-dimensional inference tasks, and in recent years there has been a flurry of work on explaining the apparent computational hardness in these problems by proving lower bounds against restricted (yet powerful) models of computation such as statistical queries (SQ), sum-of-squares (SoS), and low-degree polynomials (LDP). However, no such prior work exists for tensor decomposition, largely because its hardness does not appear to be explained by a "planted versus null" testing problem. We consider a model for random order-3 tensor decomposition where one component is slightly larger in norm than the rest (to break symmetry), and the components are drawn uniformly from the hypercube. We resolve the computational complexity in the LDP model: $O(\log n)$-degree polynomial functions of the tensor entries can accurately estimate the largest component when $r \ll n^{3/2}$ but fail to do so when $r \gg n^{3/2}$. This provides rigorous evidence suggesting that the best known algorithms for tensor decomposition cannot be improved, at least by known approaches. A natural extension of the result holds for tensors of any fixed order $k \ge 3$, in which case the LDP threshold is $r \sim n^{k/2}$.
翻译:假设我们得到的是美元- 维度顺序 - 3 对称 ART (\ mathbb{R ⁇ n) @ otime 3} 美元, 也就是随机级别-1 条件的总额。 当制度下只知道 $r\ lessmissim n ⁇ 2$, 但多元时间算法时, 原则上有可能恢复等级-1 组件。 类似的“ 统计$- 美元- 平面 ART (\mathbb{R ⁇ n) 3} 3} 美元 3} 美元 。 类似的“ 统计$- 美元- 平面性 ART 值 3} 3} 美元 3} 美元 3} 美元 3} 美元 美元- 美元- 美元- 的计算方法, 其硬性值似乎不是由“ 嵌成的 ” 测试问题来解释的 。 近年, 我们考虑一种用于精确度- 度- (yr) 3\ 标准中, 硬性 3\ 的计算中, 当我们所知道的 Ral- 的 Ral- decommexmal 的计算中, 当我们所知道的 Ral 3 的 Rexmexmexmex 3 中, 的 Rexmexmexmexmex 无法 任何 的 Rex 。