Stochastic parareal (SParareal) is a probabilistic variant of the popular parallel-in-time algorithm known as parareal. Similarly to parareal, it combines fine- and coarse-grained solutions to an ordinary differential equation (ODE) using a predictor-corrector (PC) scheme. The key difference is that carefully chosen random perturbations are added to the PC to try to accelerate the location of a stochastic solution to the ODE. In this paper, we derive superlinear and linear mean-square error bounds for SParareal applied to nonlinear systems of ODEs using different types of perturbations. We illustrate these bounds numerically on a linear system of ODEs and a scalar nonlinear ODE, showing a good match between theory and numerics.
翻译:斯托切斯模拟( SParareal) 是一种常见的平行时间算法的概率变方( SParareal) 。 与 parreal 类似, 它使用预测器- 校正器( PC) 方案, 将精细和粗粗微的差别方程( ODE) 与普通的差别方程( ODE) 相结合。 关键区别在于, 个人计算机中添加了精心选择的随机扰动, 以试图加速 ODE 的随机解决方案的位置 。 在本文中, 我们从非线性ODE 系统中生成了超线性和线性平均方差, 并使用不同种类的扰动法, 用于非线性ODE 系统 。 我们用数字方式在ODE 线性系统和 标度非线性非线性非线性ODS 中展示了这些界限, 显示理论与数字性之间的匹配性。