In recent years a great deal of attention has been paid to discretizations of the incompressible Stokes equations that exactly preserve the incompressibility constraint. These are of substantial interest because these discretizations are pressure-robust, i.e. the error estimates for the velocity do not depend on the error in the pressure. Similar considerations arise in nearly incompressible linear elastic solids. Conforming discretizations with this property are now well understood in two dimensions, but remain poorly understood in three dimensions. In this work we state two conjectures on this subject. The first is that the Scott-Vogelius element pair is inf-sup stable on uniform meshes for velocity degree $k \ge 4$; the best result available in the literature is for $k \ge 6$. The second is that there exists a stable space decomposition of the kernel of the divergence for $k \ge 5$. We present numerical evidence supporting our conjectures.
翻译:近些年来,人们非常关注不压缩的Stokes方程式的离散性,这些不压缩的Stokes方程式完全保留了不压缩的制约。这些离散性方程式引起了很大的兴趣,因为这些离散性方程式是压力-气旋,即速度的误差并不取决于压力的误差。在几乎不压缩的线性弹性固体中也出现了类似的考虑。与这种特性的离散性目前在两个维度上得到了很好的理解,但在三个维度上仍然不为人所理解。在这项工作中,我们给出了两个关于这个主题的预测。首先,Scott-Vogelius元素对齐在统一的模件上,速度为$k\ge 4$;文献中的最佳结果为$k\ge 6$。第二个是,差异的内核部分在$k\ge 5美元上存在稳定的解析空间。我们给出的数字证据支持我们的猜想。