We propose Characteristic-Neural Ordinary Differential Equations (C-NODEs), a framework for extending Neural Ordinary Differential Equations (NODEs) beyond ODEs. While NODEs model the evolution of a latent variables as the solution to an ODE, C-NODE models the evolution of the latent variables as the solution of a family of first-order quasi-linear partial differential equations (PDEs) along curves on which the PDEs reduce to ODEs, referred to as characteristic curves. This in turn allows the application of the standard frameworks for solving ODEs, namely the adjoint method. Learning optimal characteristic curves for given tasks improves the performance and computational efficiency, compared to state of the art NODE models. We prove that the C-NODE framework extends the classical NODE on classification tasks by demonstrating explicit C-NODE representable functions not expressible by NODEs. Additionally, we present C-NODE-based continuous normalizing flows, which describe the density evolution of latent variables along multiple dimensions. Empirical results demonstrate the improvements provided by the proposed method for classification and density estimation on CIFAR-10, SVHN, and MNIST datasets under a similar computational budget as the existing NODE methods. The results also provide empirical evidence that the learned curves improve the efficiency of the system through a lower number of parameters and function evaluations compared with baselines.
翻译:我们提议了典型-内线普通差异(C-内分等-内分等)的特征-内分等(C-内分异),这是将神经普通差异(内分异)扩展到内分数以外的标准差异(内分)框架。虽然国家数据模式将潜在变量的演化模型模型模型模型作为内化的解决方案,但C-内建模型模型模型模型模型将潜在变量的演化作为一阶准线性线性偏偏差方方(PDEs)组合的解决方案,而PDE减少为内分数的曲线,称为特征曲线。这反过来又使将神经普通普通差异(内分数)扩展成一个框架,用于将神经普通差异(内称为特征曲线)扩展为将神经普通差异(内分解为特征曲线)扩大,从而将神经普通差异(内称为连接法系)标准框架框架,用以将标准框架框架用于解决代数的标准化标准框架,即联合方法;为特定任务学习最优化的典型特点曲线曲线曲线曲线曲线曲线曲线将改进业绩曲线曲线的功能,以便证明特定任务改进业绩和计算业绩证据,提高业绩;我们证明C-内C-内典型国家数据库框架通过明确C-内的拟议系统分类和密度系统,通过分类和密度系统改进了分类和密度计算、C-内现有数据分析、C-内现有数据分析、C-内现有数据分析、CR10号的现有数据分析提供数据分析、CR结果、CR结果,提供一套数据分析、C-数据分析、CR结果、CR结果、CR结果,提供一套数据分析、C-、C-C-10号的现有数据分析、C-10号的现有数据分析、C-数据分析、CR结果、C-C-C-CR结果,提供一套数据分析、CR数据库、CR数据库、C-C-CR结果、C-C-C-、C-、C-、C-、C-、C-、C-、C-数据分析、C-数字、C-数据分析、CRF、C-C-C-C-C-C-CR-CRLFL-C-CR-C-C-数据分析、CRLLLLAFLLLLLLLLA、C-