We propose formulating the finite-horizon stochastic optimal control problem for colloidal self-assembly in the space of probability density functions (PDFs) of the underlying state variables (namely, order parameters). The control objective is formulated in terms of steering the state PDFs from a prescribed initial probability measure towards a prescribed terminal probability measure with minimum control effort. For specificity, we use a univariate stochastic state model from the literature. Both the analysis and the computational steps for control synthesis as developed in this paper generalize for multivariate stochastic state dynamics given by generic nonlinear in state and non-affine in control models. We derive the conditions of optimality for the associated optimal control problem. This derivation yields a system of three coupled partial differential equations together with the boundary conditions at the initial and terminal times. The resulting system is a generalized instance of the so-called Schr\"{o}dinger bridge problem. We then determine the optimal control policy by training a physics-informed deep neural network, where the "physics" are the derived conditions of optimality. The performance of the proposed solution is demonstrated via numerical simulations on a benchmark colloidal self-assembly problem.
翻译:我们提议在基本状态变量(即顺序参数)的概率密度功能空间(PDFs)内为凝固自我集合的自相残存的自相残缺的最佳控制问题制定限值最佳控制问题。 控制目标的设定是引导州PDF从规定的初始概率测量从规定的最终概率测量到最低限度控制努力的指定终点概率测量。 具体地说, 我们从文献中采用自相残缺的状态模型。 本文中为控制合成开发的自相残缺的分析及计算步骤, 包括州和非控制模型中通用非线性非线性非线性多变异性随机状态动态的统称。 我们为相关最佳控制问题的最佳条件 。 由此生成的系统将产生三个相加的局部偏差方程式以及初始和终端时的边界条件。 由此形成的系统是所谓的Schr\"{o}丁ger桥问题的一个普遍实例。 我们随后通过培训一个物理知情的深神经网络来确定最佳控制政策, 在那里“ 物理” 是最佳的衍生的最佳条件 。 通过模拟模型模拟 模拟 。