We introduce an $r-$adaptive algorithm to solve Partial Differential Equations using a Deep Neural Network. The proposed method restricts to tensor product meshes and optimizes the boundary node locations in one dimension, from which we build two- or three-dimensional meshes. The method allows the definition of fixed interfaces to design conforming meshes, and enables changes in the topology, i.e., some nodes can jump across fixed interfaces. The method simultaneously optimizes the node locations and the PDE solution values over the resulting mesh. To numerically illustrate the performance of our proposed $r-$adaptive method, we apply it in combination with a collocation method, a Least Squares Method, and a Deep Ritz Method. We focus on the latter to solve one- and two-dimensional problems whose solutions are smooth, singular, and/or exhibit strong gradients.
翻译:我们引入了一种$-$适应算法,用深神经网络解决部分差异。 推荐的方法将限制在高产品夹子上, 优化一个维度的边界节点位置, 我们从中建起两维或三维的间距。 这个方法可以定义固定的界面, 设计符合 meshes 的界面, 并允许改变地形学, 即一些节点可以跳过固定的界面。 这个方法同时优化节点位置和PDE 解决方案值, 以对由此产生的网点进行优化。 为了用数字来说明我们提议的$- $ 适应方法的性能, 我们应用它与一种合用法、 最低方位法和深利茨 方法相结合。 我们侧重于后者解决一维和二维的问题, 这些问题的解决方案是平滑的, 单一的, 和/ 显示强烈的梯度 。