The problem of classifying turbulent environments from partial observation is key for some theoretical and applied fields, from engineering to earth observation and astrophysics, e.g. to precondition searching of optimal control policies in different turbulent backgrounds, to predict the probability of rare events and/or to infer physical parameters labelling different turbulent set-ups. To achieve such goal one can use different tools depending on the system's knowledge and on the quality and quantity of the accessible data. In this context, we assume to work in a model-free setup completely blind to all dynamical laws, but with a large quantity of (good quality) data for training. As a prototype of complex flows with different attractors, and different multi-scale statistical properties we selected 10 turbulent 'ensembles' by changing the rotation frequency of the frame of reference of the 3d domain and we suppose to have access to a set of partial observations limited to the instantaneous kinetic energy distribution in a 2d plane, as it is often the case in geophysics and astrophysics. We compare results obtained by a Machine Learning (ML) approach consisting of a state-of-the-art Deep Convolutional Neural Network (DCNN) against Bayesian inference which exploits the information on velocity and enstrophy moments. First, we discuss the supremacy of the ML approach, presenting also results at changing the number of training data and of the hyper-parameters. Second, we present an ablation study on the input data aimed to perform a ranking on the importance of the flow features used by the DCNN, helping to identify the main physical contents used by the classifier. Finally, we discuss the main limitations of such data-driven methods and potential interesting applications.
翻译:从部分观测对动荡环境进行分类的问题,对于从工程到地球观测和天体物理学等一些理论和应用领域来说,对于从工程到地球观察和天体物理学等一些理论和应用领域来说,是关键的关键,例如,对于在不同动荡背景中寻找最佳控制政策的先决条件,对稀有事件的概率进行预测和/或推断给不同动荡设置贴上标签的物理参数。为了实现这一目标,人们可以使用不同工具,这取决于系统的知识以及可获取数据的质量和数量。在这方面,我们假设在一个完全无视所有动态法律的模型设置中工作,但需要大量(高质量的)数据用于培训。作为复杂流动的原型,在不同动荡背景中寻找最佳控制政策,以及不同的多尺度统计属性,我们选择了10个动荡事件的可能性和/或推断物理参数的物理参数,我们选择了一组局部观察,但仅限于在2天平面的瞬间运动能量分布,因为地球物理和天体物理学常常确定数字。我们比较了机器学习(ML)方法取得的结果,其中含有物理吸引不同吸引人的物理吸引者的复杂流动,我们选择的深度数据流,我们选择了三维域域域域的深度数据流,我们利用了基础数据流,我们所使用的轨道上的数据,我们使用了对正轨数据流的深度数据流的深度数据流的深度数据流的深度数据流,我们使用了一组数据,我们使用了一组数据流的深度数据,我们使用了一组数据流的深度数据,我们使用。