We propose a multivariate GARCH model for non-stationary health time series by modifying the variance of the observations of the standard state space model. The proposed model provides an intuitive way of dealing with heteroskedastic data using the conditional nature of state space models. We follow the Bayesian paradigm to perform the inference procedure. In particular, we use Markov chain Monte Carlo methods to obtain samples from the resultant posterior distribution. Due to the natural temporal correlation structure induced on model parameters, we use the forward filtering backward sampling algorithm to efficiently obtain samples from the posterior distribution. The proposed model also handles missing data in a fully Bayesian fashion. We validate our model on synthetic data, and then use it to analyze a data set obtained from an intensive care unit in a Montreal hospital. We further show that our proposed models offer better performance, in terms of WAIC, than standard state space models. The proposed model provides a new way to model multivariate heteroskedastic non-stationary time series data and the simplicity in applying the WAIC allows us to compare competing models.
翻译:我们建议对非静止健康时间序列采用多种变式的GARCH模型,修改标准国家空间模型观测的差异。拟议模型提供了一种直观的方法,用国家空间模型的有条件性质处理三重数据。我们遵循巴伊西亚模式来进行推断程序。特别是,我们使用Markov链蒙特卡洛方法从由此形成的后方分布中获取样本。由于模型参数产生的自然时间相关结构,我们使用前方过滤后向抽样算法,以便有效地从后方分布中获取样本。拟议模型还完全处理巴伊西亚模式的缺失数据。我们验证了我们的合成数据模型,然后用它分析蒙特利尔医院一个强化护理单位获得的数据集。我们进一步表明,我们拟议的模型在WACIC方面比标准国家空间模型提供更好的性能。拟议模型为模拟多变异式超静态非静态时间序列数据提供了新的方法,并且应用WACIC的简单性能使我们能够比较相互竞争的模式。</s>