This paper proposes an unsupervised anomaly detection technique for image-based plant disease diagnosis. The construction of large and publicly available datasets containing labeled images of healthy and diseased crop plants led to growing interest in computer vision techniques for automatic plant disease diagnosis. Although supervised image classifiers based on deep learning can be a powerful tool for plant disease diagnosis, they require a huge amount of labeled data. The data mining technique of anomaly detection includes unsupervised approaches that do not require rare samples for training classifiers. We propose an unsupervised anomaly detection technique for image-based plant disease diagnosis that is based on the reconstructability of colors; a deep encoder-decoder network trained to reconstruct the colors of \textit{healthy} plant images should fail to reconstruct colors of symptomatic regions. Our proposed method includes a new image-based framework for plant disease detection that utilizes a conditional adversarial network called pix2pix and a new anomaly score based on CIEDE2000 color difference. Experiments with PlantVillage dataset demonstrated the superiority of our proposed method compared to an existing anomaly detector at identifying diseased crop images in terms of accuracy, interpretability and computational efficiency.


翻译:本文建议对基于图像的植物疾病诊断采用一种不受监督的异常检测技术; 建造大型和公开的数据集,其中含有健康疾病作物和疾病作物的标签图像,使人们对计算机视觉技术的自动植物疾病诊断越来越感兴趣; 尽管基于深层学习的受监督的图像分类可成为植物疾病诊断的有力工具,但它们需要大量标签数据。 异常检测的数据挖掘技术包括一种不需要为培训分类师提供稀有样本的不受监督的异常检测技术。 我们提出了一种基于颜色可重建的基于图像的植物疾病诊断的不受监督的异常检测技术; 一个受过训练的深层编码器破坏器网络,以重建\ textit{healthy} 植物图像的颜色,不应再重建症状区域的颜色。 我们提议的方法包括一个新的基于图像的植物疾病检测框架,利用一个称为pix2pix的有条件的对抗网络和基于CEEEE2000色差异的新的异常分。 与PlanVillage的实验表明,在确定准确性、可解释性和计算功能方面的疾病作物图象方面,我们建议的方法优于现有的异常检测器。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
39+阅读 · 2020年7月27日
生成式对抗网络GAN异常检测
专知会员服务
114+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员