In this paper, we propose Normality-Calibrated Autoencoder (NCAE), which can boost anomaly detection performance on the contaminated datasets without any prior information or explicit abnormal samples in the training phase. The NCAE adversarially generates high confident normal samples from a latent space having low entropy and leverages them to predict abnormal samples in a training dataset. NCAE is trained to minimise reconstruction errors in uncontaminated samples and maximise reconstruction errors in contaminated samples. The experimental results demonstrate that our method outperforms shallow, hybrid, and deep methods for unsupervised anomaly detection and achieves comparable performance compared with semi-supervised methods using labelled anomaly samples in the training phase. The source code is publicly available on `https://github.com/andreYoo/NCAE_UAD.git'.
翻译:在本文中,我们提议采用 " 正常度校准自动编码器 " (NCAE),这可以在没有事先信息或培训阶段的明显异常样本的情况下,提高受污染数据集的异常检测性能; NCAE 对抗性地生成了来自低对流率潜伏空间的高度自信的正常样本,并利用这些样本在培训数据集中预测异常样本; NCAE 接受培训,以尽量减少未污染样品的重建错误和受污染样品的重建错误; 实验结果表明,我们的方法优于未经监督的异常检测的浅、混合和深层方法,在培训阶段使用贴有标签的异常样本,取得了与半监督方法的类似性能; 源代码公布在“https://github.com/andreYoo/NCAE_UAD.git”上。