Detecting out-of-distribution (OOD) samples in medical imaging plays an important role for downstream medical diagnosis. However, existing OOD detectors are demonstrated on natural images composed of inter-classes and have difficulty generalizing to medical images. The key issue is the granularity of OOD data in the medical domain, where intra-class OOD samples are predominant. We focus on the generalizability of OOD detection for medical images and propose a self-supervised Cascade Variational autoencoder-based Anomaly Detector (CVAD). We use a variational autoencoders' cascade architecture, which combines latent representation at multiple scales, before being fed to a discriminator to distinguish the OOD data from the in-distribution (ID) data. Finally, both the reconstruction error and the OOD probability predicted by the binary discriminator are used to determine the anomalies. We compare the performance with the state-of-the-art deep learning models to demonstrate our model's efficacy on various open-access medical imaging datasets for both intra- and inter-class OOD. Further extensive results on datasets including common natural datasets show our model's effectiveness and generalizability. The code is available at https://github.com/XiaoyuanGuo/CVAD.
翻译:在医疗成像中检测传播(OOOD)样本对下游医疗诊断具有重要作用,然而,现有的OOD探测器在由各类之间组成的自然图像上展示,难以将其概括为医疗图像,关键的问题是医疗领域OOOD数据的颗粒性,因为该类内部OOOD样本占主导地位。我们侧重于OOOD检测在医疗图像中的可普遍适用性,并提出一个以Anuamaly为基地的自动自动自动检测器(CVAD)自我监督的Cascade Variational 自动检测器(CVAD)。我们使用一个变式自动采集器的级联体结构,在向歧视者输入OOOD数据与内部(ID)数据之前,将潜值代表制成多种比例,将OOD数据与内部(ID)数据区分开源数据。最后,使用硬质导体导体预测的重建错误和OOOOD概率都用来确定异常现象。我们将性状态和深层学习模型的性能进行比较,以显示我们模型在各种公开获取的OOOOD模型的医学成像数据集的功效。关于OD/GOD/GOD的可进一步的广泛数据,包括通用的自然数据。