Anomaly detection is a well-known task that involves the identification of abnormal events that occur relatively infrequently. Methods for improving anomaly detection performance have been widely studied. However, no studies utilizing test-time augmentation (TTA) for anomaly detection in tabular data have been performed. TTA involves aggregating the predictions of several synthetic versions of a given test sample; TTA produces different points of view for a specific test instance and might decrease its prediction bias. We propose the Test-Time Augmentation for anomaly Detection (TTAD) technique, a TTA-based method aimed at improving anomaly detection performance. TTAD augments a test instance based on its nearest neighbors; various methods, including the k-Means centroid and SMOTE methods, are used to produce the augmentations. Our technique utilizes a Siamese network to learn an advanced distance metric when retrieving a test instance's neighbors. Our experiments show that the anomaly detector that uses our TTA technique achieved significantly higher AUC results on all datasets evaluated.
翻译:异常探测是一项众所周知的任务,涉及查明相对较少发生的异常事件; 已经广泛研究了改进异常探测性能的方法; 然而,没有在表格数据中进行利用测试时间增强(TTA)来探测异常现象的研究; TTA涉及对某一试验样品的若干合成版本的预测的汇总; TTA为某一具体试验实例产生不同的观点,并可能减少其预测偏差; 我们提议了异常探测试验时间增强(TTAD)技术,这是一种以TTA为基础的方法,旨在改进异常探测性能。 TTAD增加了一个基于近邻的测试实例; 使用了各种方法,包括 k-Means midroid 和 SMOTE 方法,以产生增强值。 我们的技术利用一个暹米网络在检索试验实例的邻居时学习先进的距离测量标准。 我们的实验显示,异常探测器使用我们的TA技术,在所有被评估的数据集中都取得了高得多的AUC结果。