A black-box optimization algorithm such as Bayesian optimization finds extremum of an unknown function by alternating inference of the underlying function and optimization of an acquisition function. In a high-dimensional space, such algorithms perform poorly due to the difficulty of acquisition function optimization. Herein, we apply quantum annealing (QA) to overcome the difficulty in the continuous black-box optimization. As QA specializes in optimization of binary problems, a continuous vector has to be encoded to binary, and the solution of QA has to be translated back. Our method has the following three parts: 1) Random subspace coding based on axis-parallel hyperrectangles from continuous vector to binary vector. 2) A quadratic unconstrained binary optimization (QUBO) defined by acquisition function based on nonnegative-weighted linear regression model which is solved by QA. 3) A penalization scheme to ensure that the QA solution can be translated back. It is shown in benchmark tests that its performance using D-Wave Advantage$^{\rm TM}$ quantum annealer is competitive with a state-of-the-art method based on the Gaussian process in high-dimensional problems. Our method may open up a new possibility of quantum annealing and other QUBO solvers including quantum approximate optimization algorithm (QAOA) using a gated-quantum computers, and expand its range of application to continuous-valued problems.


翻译:Bayesian 优化等黑盒优化算法通过交替推断基本功能和优化获取函数的优化,发现一个未知功能的极端。 在高维空间中,由于获取功能优化的困难,这种算法运行不力。 在这里, 我们应用量安眠( QA) 来克服连续黑盒优化的难度。 当 QA 专门优化二进制问题时, 连续矢量必须编码为二进制, QA 的解决方案必须被翻译回来。 我们的方法有以下三个部分:1) 以直径双向矢量控函数为主的随机子空间连接。 在轴- 双向向矢量控函数为主的超矩形计算。 2) 以非负负负重量的线性回归模型定义的四进制双进式优化( QOBOBO) 定义的二次二次调整, 保证QA- QVP- QO- QO- QOrm 快速化算法为基数。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员