Spiking Neural Networks (SNNs) provide significantly lower power dissipationthan deep neural networks (DNNs), called as analog neural networks (ANNs) inthis work. Conventionally, SNNs have failed to arrive at the training accuraciesof ANNs. However, several recent researches have shown that this challenge canbe addressed by converting ANN to SNN instead of the direct training of SNNs.Nonetheless, the large latency of SNNs still limits their application, more prob-lematic for large size datasets such as Imagenet. It is challenging to overcome thisproblem since in SNNs, there is the trade-off relation between their accuracy and la-tency. In this work, we elegantly alleviate the problem by using a trainable clippinglayers, so called TCL. By combining the TCL with traditional data-normalizationtechniques, we respectively obtain 71.12% and 73.38% (on ImageNet) for VGG-16and RESNET-34 after the ANN to SNN conversion with the latency constraint of250 cycles.


翻译:然而,最近的一些研究表明,将ANN转换为SNN而不是直接培训SNN(SNNN)可以解决这一挑战。 无一例外,SNN的宽度仍然限制其应用,对图像网等大型数据集而言,其使用率要高得多,要克服这个问题,就很难在SNN(ANN)中,其精确度和亮度之间的交易关系。在这项工作中,我们通过使用可训练剪报机(称为TCL)来缓和问题。通过将TLL与传统数据标准化技术相结合,我们分别获得了VGG-16和RESNET-34在ANNE转换至SNNON250周期时的71.12%和73.38%(图像网)用于VGG-16和RESNET-34。

3
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
5+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Arxiv
6+阅读 · 2020年4月14日
Arxiv
26+阅读 · 2018年9月21日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
GANs最新进展,30页ppt,GANs: the story so far
专知会员服务
42+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
已删除
将门创投
5+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员