In this paper, we propose new Metropolis-Hastings and simulated annealing algorithms on finite state space via modifying the energy landscape. The core idea of landscape modification relies on introducing a parameter $c$, in which the landscape is modified once the algorithm is above this threshold parameter. We illustrate the power and benefits of landscape modification by investigating its effect on the classical Curie-Weiss model with Glauber dynamics and external magnetic field in the subcritical regime. This leads to a landscape-modified mean-field equation, and with appropriate choice of $c$ the free energy landscape can be transformed from a double-well into a single-well, while the location of the global minimum is preserved on the modified landscape. Consequently, running algorithms on the modified landscape can improve the convergence to the ground-state in the Curie-Weiss model. In the setting of simulated annealing, we demonstrate that landscape modification can yield improved mean tunneling time between global minima, and give convergence guarantee using an improved logarithmic cooling schedule with reduced critical height. Finally, we discuss connections between landscape modification and other acceleration techniques such as Catoni's energy transformation algorithm, preconditioning, importance sampling and quantum annealing. We stress that the technique developed in this paper is applicable to any difference-based discrete optimization algorithm.
翻译:在本文中,我们提出新的大都会-哈斯登峰造极法,并通过改变能源景观,对有限的状态空间进行模拟整流算法。地貌改变的核心理念依赖于引入一个参数$c$,一旦算法超过这一阈值参数,地貌景观就会被修改。我们通过调查地貌改变对古典Curie-Weiss模型的影响以及Glauber动态和次临界系统中外部磁场的影响,来说明地貌改变的动力和好处。这可以导致一个地貌改变的平均值方程式,并适当选择美元,使自由能源景观从一个双井变成一个单井,而全球最低值的位置则保留在修改后的地貌上。因此,在改变地貌时运行地貌的算法可以改善地貌与Curi-Weiss模型中地貌的趋近点的趋近点关系。在模拟的Annealing中,我们证明地貌改变地貌可以带来更好的平均地道路时间,并且利用改进的对数调冷却计划来保证汇合一致。最后,我们讨论地貌改变地貌和加速地貌技术之间的连接,例如C托罗尼定的地平压,我们所开发的地平质定的地平质定法,这是一个重要的先决条件。