Consider two $D$-dimensional data vectors (e.g., embeddings): $u, v$. In many embedding-based retrieval (EBR) applications where the vectors are generated from trained models, $D=256\sim 1024$ are common. In this paper, OPORP (one permutation + one random projection) uses a variant of the ``count-sketch'' type of data structures for achieving data reduction/compression. With OPORP, we first apply a permutation on the data vectors. A random vector $r$ is generated i.i.d. with moments: $E(r_i) = 0, E(r_i^2)=1, E(r_i^3) =0, E(r_i^4)=s$. We multiply (as dot product) $r$ with all permuted data vectors. Then we break the $D$ columns into $k$ equal-length bins and aggregate (i.e., sum) the values in each bin to obtain $k$ samples from each data vector. One crucial step is to normalize the $k$ samples to the unit $l_2$ norm. We show that the estimation variance is essentially: $(s-1)A + \frac{D-k}{D-1}\frac{1}{k}\left[ (1-\rho^2)^2 -2A\right]$, where $A\geq 0$ is a function of the data ($u,v$). This formula reveals several key properties: (1) We need $s=1$. (2) The factor $\frac{D-k}{D-1}$ can be highly beneficial in reducing variances. (3) The term $\frac{1}{k}(1-\rho^2)^2$ is actually the asymptotic variance of the classical correlation estimator. We illustrate that by letting the $k$ in OPORP to be $k=1$ and repeat the procedure $m$ times, we exactly recover the work of ``very spars random projections'' (VSRP). This immediately leads to a normalized estimator for VSRP which substantially improves the original estimator of VSRP. In summary, with OPORP, the two key steps: (i) the normalization and (ii) the fixed-length binning scheme, have considerably improved the accuracy in estimating the cosine similarity, which is a routine (and crucial) task in modern embedding-based retrieval (EBR) applications.


翻译:考虑两个维基数据矢量 (例如, 嵌入) : 美元 : 美元 : 美元 : 在许多嵌入式的矢量回收( EBR) 应用中, 由经过训练的模型生成的矢量, 美元=256\sim 1024美元是常见的 。 在本文中, OPORP (一个变换 + 一个随机投影) 使用“ 计算- 获取” 数据结构的变式来减少/ 压缩数据 。 有了 OPORP, 我们首先在数据矢量矢量矢量矢量上应用一个变异性 : 美元 美元 = 美元 美元 = 美元 美元 。 美元 美元 = 美元 美元 = 美元 = 美元 = 1, 美元 美元 = 1 。 原始值= 0, E (r_ i_ 4) 以所有 数据矢量变数 。 然后, 我们将美元 = =xxxxxxxxx 。 。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月29日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员