For real $\alpha\in [0,1)$ and a hypergraph $G$, the $\alpha$-spectral radius of $G$ is the largest eigenvalue of the matrix $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$, where $A(G)$ is the adjacency matrix of $G$, which is a symmetric matrix with zero diagonal such that for distinct vertices $u,v$ of $G$, the $(u,v)$-entry of $A(G)$ is exactly the number of edges containing both $u$ and $v$, and $D(G)$ is the diagonal matrix of row sums of $A(G)$. We study the $\alpha$-spectral radius of a hypergraph that is uniform or not necessarily uniform. We propose some local grafting operations that increase or decrease the $\alpha$-spectral radius of a hypergraph. We determine the unique hypergraphs with maximum $\alpha$-spectral radius among $k$-uniform hypertrees, among $k$-uniform unicyclic hypergraphs, and among $k$-uniform hypergraphs with fixed number of pendant edges. We also determine the unique hypertrees with maximum $\alpha$-spectral radius among hypertrees with given number of vertices and edges, the unique hypertrees with the first three largest (two smallest, respectively) $\alpha$-spectral radii among hypertrees with given number of vertices, the unique hypertrees with minimum $\alpha$-spectral radius among the hypertrees that are not $2$-uniform, the unique hypergraphs with the first two largest (smallest, respectively) $\alpha$-spectral radii among unicyclic hypergraphs with given number of vertices, and the unique hypergraphs with maximum $\alpha$-spectral radius among hypergraphs with fixed number of pendant edges.
翻译:对于实数$ \alpha\in [0,1)$和超图$G$,$G$的$\alpha$-谱半径是矩阵$A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$的最大特征值,其中$A(G)$是$G$的邻接矩阵,是一种对角线为零的对称矩阵,用于具有不同顶点$u,v$的情况下$A(G)$中$(u,v)$的条目表示同时包含$u$和$v$的边的数量,$D(G)$是$A(G)$的行和的对角矩阵。我们研究均匀或不一定均匀的超图的α-谱半径。我们提出了一些可以增加或减少超图的α-谱半径的局部嫁接操作。我们确定了具有最大α-谱半径的唯一超图,其中包括$k$ -均匀半树形超图,包括$k$ -均匀单圈超图,以及具有固定数量的垂直边的$k$-均匀超图。我们还确定了具有给定顶点和边数的超树形结构的最大α-谱半径的唯一超图,具有给定顶点数的前三个最大(最小)的α-谱半径的唯一超树形结构,具有非$ 2 $-均匀性的具有最小α-谱半径的唯一超树形结构,具有给定顶点数的前两个最大(最小)的α-谱半径的唯一单圈超图,以及具有固定数量的垂直边的最大α-谱半径的唯一超图。