In this paper, we study the problem of estimating smooth Generalized Linear Models (GLM) in the Non-interactive Local Differential Privacy (NLDP) model. Different from its classical setting, our model allows the server to access some additional public but unlabeled data. By using Stein's lemma and its variants, we first show that there is an $(\epsilon, \delta)$-NLDP algorithm for GLM (under some mild assumptions), if each data record is i.i.d sampled from some sub-Gaussian distribution with bounded $\ell_1$-norm. Then with high probability, the sample complexity of the public and private data, for the algorithm to achieve an $\alpha$ estimation error (in $\ell_\infty$-norm), is $O(p^2\alpha^{-2})$ and ${O}(p^2\alpha^{-2}\epsilon^{-2})$, respectively, if $\alpha$ is not too small ({\em i.e.,} $\alpha\geq \Omega(\frac{1}{\sqrt{p}})$), where $p$ is the dimensionality of the data. This is a significant improvement over the previously known quasi-polynomial (in $\alpha$) or exponential (in $p$) complexity of GLM with no public data. Also, our algorithm can answer multiple (at most $\exp(O(p))$) GLM queries with the same sample complexities as in the one GLM query case with at least constant probability. We then extend our idea to the non-linear regression problem and show a similar phenomenon for it. Finally, we demonstrate the effectiveness of our algorithms through experiments on both synthetic and real world datasets. To our best knowledge, this is the first paper showing the existence of efficient and effective algorithms for GLM and non-linear regression in the NLDP model with public unlabeled data.


翻译:在本文中, 我们研究在非交互式本地差异隐私( NLDP) 模式中估算平滑通用线性模型( GLM) 的问题。 不同于其古典设置, 我们的模型允许服务器访问一些额外的公共数据, 但是没有标签。 通过使用 Stein 的 lemma 及其变体, 我们首先显示 GLM 的 $( psilon,\ delta) $- NLDP 算法( 在一些轻度假设下 ), 如果每个数据记录是 i. i. d 样本来自某些包含 $@ell_ 1$ 的 GLDP 。 如果 美元不是太小( i. nell_ 1 美元), 公有数据的样本的复杂性( 美元) 则显示 G2\\ phty 美元的估计错误( ) 美元( p2\\ alpha) 和 $ ( premodeal dismology) 。 ( preal) a modeal deal demodeal deal dal dal deal dies ( ) a dal- promodeal deal dal) extiquestate. extime the the at the the extiquest the extiquest the the extiquest the the the the extime ( pal dal dal) ( puttal) ( puttal) ( puttal exports) ( promod)

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
17+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员