Mixture of regression models are useful for regression analysis in heterogeneous populations where a single regression model may not be appropriate for the entire population. We study the nonparametric maximum likelihood estimator (NPMLE) for fitting these models. The NPMLE is based on convex optimization and does not require prior specification of the number of mixture components. We establish existence of the NPMLE and prove finite-sample parametric (up to logarithmic multiplicative factors) Hellinger error bounds for the predicted density functions. We also provide an effective procedure for computing the NPMLE without ad-hoc discretization and prove a theoretical convergence rate under certain assumptions. Numerical experiments on simulated data for both discrete and non-discrete mixing distributions demonstrate the remarkable performances of our approach. We also illustrate the approach on two real datasets.
翻译:回归模型的混合有助于对不同人群进行回归分析,其中单一回归模型可能不适合全体人口。我们研究了非对称最大可能性估计值(NPMLE),以安装这些模型。NPLE以二次优化为基础,不需要事先说明混合物成分的数量。我们建立了NPLE的存在,并证明有一定的Sample参数(最多为对数的多复制系数 ) Hellinger误差是预测密度函数的界限。我们还提供了一种有效的程序,用于在没有临时离散的情况下计算NNPLE,并证明某些假设之下的理论趋同率。关于离散和非分解混合分布的模拟数据的数字实验显示了我们方法的显著表现。我们还介绍了两种真实数据集的处理办法。